feat: Step 7 & 9 - AI Chat + Voice client integration
Implement AI-powered chat interface with voice input capabilities. Step 7 (Chat Interface): - Create ChatInterface component with Vercel AI SDK useChat hook - Create /api/chat route using Google Gemini (gemini-1.5-flash) - Implement thoughtful interviewer system prompt - Add real-time message streaming - Auto-scroll to latest messages Step 9 (Voice Client): - Create MicrophoneRecorder component - Integrate real-time voice transcription via Deepgram - Direct WebSocket connection using temporary tokens - Real-time transcript display in chat input - Auto-submit on speech_final event - Add @tabler/icons-react for microphone icons Architecture: - Client requests temporary Deepgram token from /api/voice-token - MediaRecorder captures audio in 250ms chunks - WebSocket sends audio directly to Deepgram - Transcripts update chat input in real-time - Final transcript auto-submits to AI chat Security: - Deepgram API key never exposed to client - Temporary tokens expire in 60 seconds - Chat requires authentication via SurrealDB JWT Testing: - Add magnitude test for voice recording flow - Tests cover happy path with mocked WebSocket Known Issue: - Page compilation needs debugging (useChat import path verified) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -1,202 +1,286 @@
|
||||
# **File: COMMIT\_06\_WRITE\_FLOW.md**
|
||||
# **File: COMMIT\_07\_CHAT.md**
|
||||
|
||||
## **Commit 6: Core Write-Through Cache API**
|
||||
## **Commit 7: AI Interviewer: UI & Backend**
|
||||
|
||||
### **Objective**
|
||||
|
||||
Implement the POST /api/nodes route. This is the core "write-through cache" logic, which is the architectural foundation of the application. It must:
|
||||
Build the conversational chat interface using the Vercel AI SDK. This includes:
|
||||
|
||||
1. Authenticate the user via their SurrealDB JWT.
|
||||
2. Retrieve their ATproto access token (from the encrypted cookie).
|
||||
3. **Step 1 (Truth):** Publish the new node to their PDS using the com.ponderants.node lexicon.
|
||||
4. **Step 2 (Cache):** Generate a gemini-embedding-001 vector from the node's body.
|
||||
5. **Step 3 (Cache):** Write the node, its atp\_uri, and its embedding to our SurrealDB cache.
|
||||
1. A chat UI (client) that passes a persona in the request body.
|
||||
2. An API route (server) that receives the persona and injects it into the system prompt.
|
||||
3. **Crucially:** Using the AI SDK's tool or schema feature to force the AI to return a specific JSON object when it detects a "complete thought".18 This is far more reliable than prompt-based JSON instructions.
|
||||
|
||||
### **Implementation Specification**
|
||||
|
||||
**1\. Create lib/db.ts**
|
||||
**1\. Define Structured Output Schema (lib/ai-schemas.ts)**
|
||||
|
||||
Create a helper file at /lib/db.ts for connecting to SurrealDB:
|
||||
Create a file at /lib/ai-schemas.ts to define the Zod schema for the AI's structured output:
|
||||
|
||||
TypeScript
|
||||
|
||||
import { Surreal } from 'surrealdb.js';
|
||||
|
||||
const db \= new Surreal();
|
||||
import { z } from 'zod';
|
||||
|
||||
/\*\*
|
||||
\* Connects to the SurrealDB instance.
|
||||
\* @param {string} token \- The user's app-specific (SurrealDB) JWT.
|
||||
\* This Zod schema defines the \*only\* structured output
|
||||
\* we want the AI to be able to generate. We will pass
|
||||
\* this to the Vercel AI SDK to guarantee the AI's output
|
||||
\* conforms to this shape. \[18\]
|
||||
\*/
|
||||
export async function connectToDB(token: string) {
|
||||
if (\!db.connected) {
|
||||
await db.connect(process.env.SURREALDB\_URL\!);
|
||||
}
|
||||
|
||||
// Authenticate as the user for this request.
|
||||
// This enforces the row-level security (PERMISSIONS)
|
||||
// defined in the schema for all subsequent queries.
|
||||
await db.authenticate(token);
|
||||
|
||||
return db;
|
||||
}
|
||||
|
||||
**2\. Create lib/ai.ts**
|
||||
|
||||
Create a helper file at /lib/ai.ts for AI operations:
|
||||
|
||||
TypeScript
|
||||
|
||||
import { GoogleGenerativeAI } from '@google/generative-ai';
|
||||
|
||||
const genAI \= new GoogleGenerativeAI(process.env.GOOGLE\_API\_KEY\!);
|
||||
|
||||
const embeddingModel \= genAI.getGenerativeModel({
|
||||
model: 'gemini-embedding-001',
|
||||
export const NodeSuggestionSchema \= z.object({
|
||||
action: z.literal('suggest\_node'),
|
||||
title: z
|
||||
.string()
|
||||
.describe('A concise, descriptive title for the thought node.'),
|
||||
body: z
|
||||
.string()
|
||||
.describe('The full, well-structured content of the thought node.'),
|
||||
});
|
||||
|
||||
/\*\*
|
||||
\* Generates a vector embedding for a given text.
|
||||
\* @param text The text to embed.
|
||||
\* @returns A 1536-dimension vector (Array\<number\>).
|
||||
\*/
|
||||
export async function generateEmbedding(text: string): Promise\<number\> {
|
||||
try {
|
||||
const result \= await embeddingModel.embedContent(text);
|
||||
return result.embedding.values;
|
||||
} catch (error) {
|
||||
console.error('Error generating embedding:', error);
|
||||
throw new Error('Failed to generate AI embedding.');
|
||||
}
|
||||
}
|
||||
export type NodeSuggestion \= z.infer\<typeof NodeSuggestionSchema\>;
|
||||
|
||||
**3\. Create Write API Route (app/api/nodes/route.ts)**
|
||||
**2\. Create Chat API Route (app/api/chat/route.ts)**
|
||||
|
||||
Create the main API file at /app/api/nodes/route.ts:
|
||||
Create the file at /app/api/chat/route.ts:
|
||||
|
||||
TypeScript
|
||||
|
||||
import { NextRequest, NextResponse } from 'next/server';
|
||||
import { cookies } from 'next/headers';
|
||||
import { AtpAgent, RichText } from '@atproto/api';
|
||||
import { connectToDB } from '@/lib/db';
|
||||
import { generateEmbedding } from '@/lib/ai';
|
||||
import {
|
||||
streamText,
|
||||
StreamTextResult,
|
||||
createStreamableValue,
|
||||
} from '@ai-sdk/react';
|
||||
import { google } from '@ai-sdk/google';
|
||||
import { createOpenAI } from '@ai-sdk/openai';
|
||||
import { NextRequest } from 'next/server';
|
||||
import { NodeSuggestionSchema } from '@/lib/ai-schemas';
|
||||
import { z } from 'zod';
|
||||
|
||||
export async function POST(request: NextRequest) {
|
||||
const surrealJwt \= cookies().get('ponderants-auth')?.value;
|
||||
const atpAccessToken \= cookies().get('atproto\_access\_token')?.value;
|
||||
// Note: Ensure GOOGLE\_API\_KEY is set in your.env.local
|
||||
const googleAi \= google('gemini-1.5-flash');
|
||||
|
||||
if (\!surrealJwt ||\!atpAccessToken) {
|
||||
return NextResponse.json({ error: 'Not authenticated' }, { status: 401 });
|
||||
}
|
||||
export async function POST(req: NextRequest) {
|
||||
const { messages, data } \= await req.json();
|
||||
|
||||
let userDid: string;
|
||||
try {
|
||||
// Decode the JWT to get the DID for the SurrealDB query
|
||||
// In a real app, we'd verify it, but for now we just
|
||||
// pass it to connectToDB which authenticates with it.
|
||||
const { payload } \= jwt.decode(surrealJwt, { complete: true })\!;
|
||||
userDid \= (payload as { did: string }).did;
|
||||
} catch (e) {
|
||||
return NextResponse.json({ error: 'Invalid auth token' }, { status: 401 });
|
||||
}
|
||||
// Get the 'persona' from the custom 'data' (or 'body') object
|
||||
const { persona } \= z
|
||||
.object({
|
||||
persona: z.string().optional().default('Socratic'),
|
||||
})
|
||||
.parse(data);
|
||||
|
||||
const { title, body, links } \= (await request.json()) as {
|
||||
title: string;
|
||||
body: string;
|
||||
links: string; // Array of at-uri strings
|
||||
};
|
||||
// Dynamically create the system prompt
|
||||
const systemPrompt \= \`You are a ${persona} thought partner.
|
||||
Your goal is to interview the user to help them explore and structure their ideas.
|
||||
When you identify a complete, self-contained idea, you MUST use the 'suggest\_node' tool
|
||||
to propose it as a new "thought node". Do not suggest a node until the
|
||||
idea is fully formed.
|
||||
For all other conversation, just respond as a helpful AI.\`;
|
||||
|
||||
if (\!title ||\!body) {
|
||||
return NextResponse.json({ error: 'Title and body are required' }, { status: 400 });
|
||||
}
|
||||
|
||||
const createdAt \= new Date().toISOString();
|
||||
|
||||
// \--- Step 1: Write to Source of Truth (ATproto) \---
|
||||
let atp\_uri: string;
|
||||
let atp\_cid: string;
|
||||
|
||||
try {
|
||||
const agent \= new AtpAgent({ service: 'https://bsky.social' }); // The service URL may need to be dynamic
|
||||
await agent.resumeSession({ accessJwt: atpAccessToken, did: userDid, handle: '' }); // Simplified resume
|
||||
|
||||
// Format the body as RichText
|
||||
const rt \= new RichText({ text: body });
|
||||
await rt.detectFacets(agent); // Detect links, mentions
|
||||
|
||||
const response \= await agent.post({
|
||||
$type: 'com.ponderants.node',
|
||||
repo: userDid,
|
||||
collection: 'com.ponderants.node',
|
||||
record: {
|
||||
title,
|
||||
body: rt.text,
|
||||
facets: rt.facets, // Include facets for rich text
|
||||
links: links?.map(uri \=\> ({ $link: uri })) ||, // Convert URIs to strong refs
|
||||
createdAt,
|
||||
},
|
||||
});
|
||||
// Use the Vercel AI SDK's streamText function
|
||||
const result: StreamTextResult \= await streamText({
|
||||
model: googleAi,
|
||||
system: systemPrompt,
|
||||
messages: messages,
|
||||
|
||||
atp\_uri \= response.uri;
|
||||
atp\_cid \= response.cid;
|
||||
// This is the critical part:
|
||||
// We provide the schema as a 'tool' to the model. \[20\]
|
||||
tools: {
|
||||
suggest\_node: {
|
||||
description: 'Suggest a new thought node when an idea is complete.',
|
||||
schema: NodeSuggestionSchema,
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
// Return the streaming response
|
||||
return result.toAIStreamResponse();
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
console.error('ATproto write error:', error);
|
||||
return NextResponse.json({ error: 'Failed to publish to PDS' }, { status: 500 });
|
||||
}
|
||||
**3\. Create Chat UI (app/chat/page.tsx)**
|
||||
|
||||
// \--- Step 2: Generate AI Embedding (Cache) \---
|
||||
let embedding: number;
|
||||
try {
|
||||
embedding \= await generateEmbedding(title \+ '\\n' \+ body);
|
||||
} catch (error) {
|
||||
console.error('Embedding error:', error);
|
||||
return NextResponse.json({ error: 'Failed to generate embedding' }, { status: 500 });
|
||||
}
|
||||
Create the file at /app/chat/page.tsx:
|
||||
|
||||
// \--- Step 3: Write to App View Cache (SurrealDB) \---
|
||||
try {
|
||||
const db \= await connectToDB(surrealJwt);
|
||||
TypeScript
|
||||
|
||||
// Create the node record in our cache.
|
||||
// The \`user\_did\` field is set, satisfying the 'PERMISSIONS'
|
||||
// clause defined in the schema.
|
||||
const newNode \= await db.create('node', {
|
||||
user\_did: userDid,
|
||||
atp\_uri: atp\_uri,
|
||||
title: title,
|
||||
body: body, // Store the raw text body
|
||||
embedding: embedding,
|
||||
// coords\_3d will be calculated later
|
||||
});
|
||||
'use client';
|
||||
|
||||
// Handle linking
|
||||
if (links && links.length \> 0) {
|
||||
// Find the corresponding cache nodes for the AT-URIs
|
||||
const targetNodes: { id: string } \= await db.query(
|
||||
'SELECT id FROM node WHERE user\_did \= $did AND atp\_uri IN $links',
|
||||
{ did: userDid, links: links }
|
||||
);
|
||||
|
||||
// Create graph relations
|
||||
for (const targetNode of targetNodes) {
|
||||
await db.query('RELATE $from-\>links\_to-\>$to', {
|
||||
from: (newNode as any).id,
|
||||
to: targetNode.id,
|
||||
import { useChat } from '@ai-sdk/react';
|
||||
import {
|
||||
Stack,
|
||||
TextInput,
|
||||
Button,
|
||||
Paper,
|
||||
ScrollArea,
|
||||
Title,
|
||||
Container,
|
||||
Group,
|
||||
Text,
|
||||
LoadingOverlay,
|
||||
} from '@mantine/core';
|
||||
import { useRouter } from 'next/navigation';
|
||||
import { useEffect, useRef } from 'react';
|
||||
import { NodeSuggestion } from '@/lib/ai-schemas';
|
||||
|
||||
export default function ChatPage() {
|
||||
const router \= useRouter();
|
||||
const viewport \= useRef\<HTMLDivElement\>(null);
|
||||
|
||||
const {
|
||||
messages,
|
||||
input,
|
||||
handleInputChange,
|
||||
handleSubmit,
|
||||
data,
|
||||
isLoading,
|
||||
} \= useChat({
|
||||
// Send the persona in the 'data' (formerly 'body') property \[21\]
|
||||
data: {
|
||||
persona: 'Socratic', // This could be a \<Select\> value
|
||||
},
|
||||
// The 'experimental\_onToolCall' handler is fired when
|
||||
// the AI returns the structured JSON 'suggest\_node' tool.
|
||||
experimental\_onToolCall: (toolCall, appendToolResult) \=\> {
|
||||
if (toolCall.toolName \=== 'suggest\_node') {
|
||||
const { title, body } \= toolCall.args as NodeSuggestion;
|
||||
|
||||
// Redirect to the editor with the AI-generated draft
|
||||
const query \= new URLSearchParams({ title, body }).toString();
|
||||
router.push(\`/editor/new?${query}\`);
|
||||
|
||||
// Return a message to display in the chat
|
||||
return appendToolResult({
|
||||
toolName: 'suggest\_node',
|
||||
args: { title, body },
|
||||
result: \`Drafting node: "${title}"\`,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return NextResponse.json(newNode);
|
||||
},
|
||||
});
|
||||
|
||||
} catch (error) {
|
||||
console.error('SurrealDB write error:', error);
|
||||
// TODO: Implement rollback for the ATproto post?
|
||||
return NextResponse.json({ error: 'Failed to save to app cache' }, { status: 500 });
|
||||
}
|
||||
// Auto-scroll to bottom
|
||||
useEffect(() \=\> {
|
||||
viewport.current?.scrollTo({
|
||||
top: viewport.current.scrollHeight,
|
||||
behavior: 'smooth',
|
||||
});
|
||||
}, \[messages\]);
|
||||
|
||||
return (
|
||||
\<Container size="md" h="100vh" style={{ display: 'flex', flexDirection: 'column' }}\>
|
||||
\<Title order={2} py="md"\>
|
||||
Ponderants Interview
|
||||
\</Title\>
|
||||
|
||||
\<ScrollArea
|
||||
h="100%"
|
||||
style={{ flex: 1 }}
|
||||
viewportRef={viewport}
|
||||
\>
|
||||
\<Stack gap="md" pb="xl"\>
|
||||
{messages.map((m) \=\> (
|
||||
\<Paper
|
||||
key={m.id}
|
||||
withBorder
|
||||
shadow="md"
|
||||
p="sm"
|
||||
radius="lg"
|
||||
style={{
|
||||
alignSelf: m.role \=== 'user'? 'flex-end' : 'flex-start',
|
||||
backgroundColor:
|
||||
m.role \=== 'user'? '\#343a40' : '\#212529',
|
||||
}}
|
||||
w="80%"
|
||||
\>
|
||||
\<Text fw={700} size="sm"\>{m.role \=== 'user'? 'You' : 'AI'}\</Text\>
|
||||
\<Text style={{ whiteSpace: 'pre-wrap' }}\>{m.content}\</Text\>
|
||||
\</Paper\>
|
||||
))}
|
||||
\</Stack\>
|
||||
\</ScrollArea\>
|
||||
|
||||
\<form onSubmit={handleSubmit}\>
|
||||
\<Paper withBorder p="sm" radius="xl" my="md"\>
|
||||
\<Group\>
|
||||
\<TextInput
|
||||
value={input}
|
||||
onChange={handleInputChange}
|
||||
placeholder="Speak or type your thoughts..."
|
||||
style={{ flex: 1 }}
|
||||
variant="unstyled"
|
||||
disabled={isLoading}
|
||||
/\>
|
||||
\<Button type="submit" radius="xl" loading={isLoading}\>
|
||||
Send
|
||||
\</Button\>
|
||||
{/\* Voice button will go here \*/}
|
||||
\</Group\>
|
||||
\</Paper\>
|
||||
\</form\>
|
||||
\</Container\>
|
||||
);
|
||||
}
|
||||
|
||||
### **Test Specification**
|
||||
|
||||
This is an API-only commit. It will be tested via the end-to-end flow in **Commit 10 (Linking)**, which will provide the UI (the "Publish" button) to trigger this route.
|
||||
**1\. Create Test File (tests/magnitude/07-chat.mag.ts)**
|
||||
|
||||
Create a file at /tests/magnitude/07-chat.mag.ts:
|
||||
|
||||
TypeScript
|
||||
|
||||
import { test } from 'magnitude-test';
|
||||
|
||||
test('\[Happy Path\] User can chat with AI', async (agent) \=\> {
|
||||
// Act: Go to chat page
|
||||
await agent.act('Navigate to /chat');
|
||||
|
||||
// Check: Ensure the initial state is correct
|
||||
await agent.check('The title "Ponderants Interview" is visible');
|
||||
await agent.check('The chat input field is empty');
|
||||
|
||||
// Act: Send a message
|
||||
await agent.act(
|
||||
'Enter "I have an idea about decentralized social media" into the chat input'
|
||||
);
|
||||
await agent.act('Click the "Send" button');
|
||||
|
||||
// Check: User's message appears
|
||||
await agent.check(
|
||||
'The message "I have an idea about decentralized social media" appears in the chat list'
|
||||
);
|
||||
|
||||
// Check: AI response appears (mocked)
|
||||
// We mock the /api/chat response to return a simple text stream
|
||||
await agent.check(
|
||||
'A new message from "AI" appears in the chat list with a response'
|
||||
);
|
||||
});
|
||||
|
||||
test(' AI can trigger a node suggestion', async (agent) \=\> {
|
||||
// Act: Go to chat page
|
||||
await agent.act('Navigate to /chat');
|
||||
|
||||
// Act: Send a message that should trigger a node
|
||||
await agent.act(
|
||||
'Enter "I think I have a fully formed thought: ATproto is the future of the internet because it separates data from the application." into the chat input'
|
||||
);
|
||||
|
||||
// We mock the /api/chat response to return the 'suggest\_node' tool call
|
||||
// with specific 'title' and 'body' arguments.
|
||||
await agent.act('Click the "Send" button');
|
||||
|
||||
// Check: The 'experimental\_onToolCall' handler should fire
|
||||
// and redirect the user to the editor.
|
||||
await agent.check(
|
||||
'The browser URL is now "http://localhost:3000/editor/new"'
|
||||
);
|
||||
|
||||
// Check: The editor page is pre-filled with the AI-generated content
|
||||
await agent.check(
|
||||
'The page URL contains the query parameter "title=ATproto: The Future of the Internet"'
|
||||
);
|
||||
await agent.check(
|
||||
'The page URL contains the query parameter "body=ATproto is the future..."'
|
||||
);
|
||||
});
|
||||
|
||||
|
||||
Reference in New Issue
Block a user