Files
app/app/api/suggest-links/route.ts
Albert f0284ef813 feat: Improve UI layout and navigation
- Increase logo size (48x48 desktop, 56x56 mobile) for better visibility
- Add logo as favicon
- Add logo to mobile header
- Move user menu to navigation bars (sidebar on desktop, bottom bar on mobile)
- Fix desktop chat layout - container structure prevents voice controls cutoff
- Fix mobile bottom bar - use icon-only ActionIcons instead of truncated text buttons
- Hide Create Node/New Conversation buttons on mobile to save header space
- Make fixed header and voice controls work properly with containers

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-09 14:43:11 +00:00

84 lines
2.3 KiB
TypeScript

import { NextRequest, NextResponse } from 'next/server';
import { cookies } from 'next/headers';
import { connectToDB } from '@/lib/db';
import { generateEmbedding } from '@/lib/ai';
import { verifySurrealJwt } from '@/lib/auth/jwt';
/**
* POST /api/suggest-links
*
* Uses vector similarity search to find related nodes.
* Takes the body text of a draft node, generates an embedding,
* and returns the top 5 most similar nodes using cosine similarity.
*/
export async function POST(request: NextRequest) {
const cookieStore = await cookies();
const surrealJwt = cookieStore.get('ponderants-auth')?.value;
if (!surrealJwt) {
return NextResponse.json({ error: 'Not authenticated' }, { status: 401 });
}
// Verify JWT to get user's DID
const userSession = verifySurrealJwt(surrealJwt);
if (!userSession) {
return NextResponse.json({ error: 'Invalid auth token' }, { status: 401 });
}
const { did: userDid } = userSession;
const { body } = (await request.json()) as { body: string };
if (!body) {
return NextResponse.json({ error: 'Body text is required' }, { status: 400 });
}
try {
// 1. Generate embedding for the current draft
const draftEmbedding = await generateEmbedding(body);
// 2. Connect to DB with root credentials
const db = await connectToDB();
// 3. Run the vector similarity search query
// This query finds the 5 closest nodes in the 'node' table
// using cosine similarity on the 'embedding' field.
// We filter by user_did to ensure users only see their own nodes.
const query = `
SELECT
id,
title,
body,
atp_uri,
vector::similarity::cosine(embedding, $draft_embedding) AS score
FROM node
WHERE user_did = $user_did
ORDER BY score DESC
LIMIT 5;
`;
const results = await db.query<[Array<{
id: string;
title: string;
body: string;
atp_uri: string;
score: number;
}>]>(query, {
draft_embedding: draftEmbedding,
user_did: userDid,
});
// The query returns an array of result sets. We want the first one.
const suggestions = results[0] || [];
return NextResponse.json(suggestions);
} catch (error) {
console.error('[Suggest Links] Error:', error);
return NextResponse.json(
{ error: 'Failed to suggest links' },
{ status: 500 }
);
}
}